

Exoplanets and NASA's Exoplanet Exploration Program

Dr. Eric E. Mamajek
Deputy Program Chief Scientist
NASA Exoplanet Exploration Program (ExEP)
Jet Propulsion Laboratory
California Institute of Technology

Credit: Ron Miller
© 2017 All rights reserved

NASA Exoplanet Exploration Program

Astrophysics Division, NASA Science Mission Directorate

VASA's search for habitable planets and life beyond our solar system

Program purpose described in 2014 NASA Science Plan

- 1. Discover planets around other stars
- 2. Characterize their properties
 - 3. Identify candidates that could harbor life

ExEP serves the science community and NASA by implementing NASA's space science vision for exoplanets

https://exoplanets.nasa.gov

Credit: NASA, ESA, L. Ricci (ESO)

How does one discover planets around other stars?

Doppler
Spectroscopy
or Radial
Velocity
Method

Credit: NASA

Techniques to detect planets around other stars

Direct Imaging

Credit: NASA

HR 8799 system:
4 giant planets
(~7-10x Jupiter's mass each)
orbiting a young
(~30 million years)
massive star
(~2x Sun's mass)

Techniques to detect planets around other stars

Techniques to detect planets around other stars

Credit: NASA

Kepler's Small Habitable Zone Planets

Planets enlarged 25x compared to stars

Credit: NASA Ames/JPL-Caltech/R. Hurt

PLANET SIZE (relative to Earth)

Credit: NASA/Kepler/F.Fressin

Credit: Hadden & Lithwick 2016

Credit: Hadden & Lithwick 2016

TESS – NASA Explorers Program (launch 2018)

James Webb Space Telescope (launch 2019)

Credit: NASA, GSFC, MIT

WFIRST Wide Field Infrared Survey Telescope (launch mid-2020s)

Starshade Optical Shield

Concepts Under Study for Large Space Telescopes Capable of Studying Exoplanets in 2030s

Large UV/Optical/Infrared Survey (LUVOIR)

Origins Space Telescope (OST)

α Cen C/Proxima Centauri

α Cen A/Rigel Kentaurus α Cen B

Exoplanet Proxima Centauri b

Credit: ESO/M.Kornmesser

State of the Galaxy (extrapolating from recent surveys)

Exoplanets are ubiquitous: statistically nearly every star likely has planets

Sun-like stars typically have >5 planets

"Super-Earths" and "sub-Neptunes" are more common than rocky planets (e.g. Earth) and gas giants (e.g. Jupiter)

Planets form over a wide range of star properties, e.g. mass, luminosity, age, chemical composition, multiplicity

Incidence of exo-Earths (rocky planets, 0.5-1.5x Earth size, in Habitable Zone) is area of active research: so far ~0.1-1 per star

Thank you!

For more on exoplanets:

https://exoplanets.nasa.gov/

NASA Exoplanet Archive

http://exoplanetarchive.ipac.caltech.edu/

Kepler & K2 exoplanet mission

https://kepler.nasa.gov/

NASA's Eyes app ("Eyes on Exoplanets")

http://eyes.jpl.nasa.gov/eyes-on-exoplanets.html

The names of 14 stars and 31 exoplanets approved by the International Astronomical Union nameexoworlds.iau.org

Microlensing with WFIRST will give statistical census of exoplanets on orbits similar to planets in our solar system

WFIRST
Coronagraph:
imaging large
exoplanets on
wide orbits
around the
nearest stars

Starshade concept

- Inner Working Angle is the closest separation of Planet and Star that we can expect to see with a given starshade
- For Hypergaussian starshade, this is approximately equivalent to:

$$IWA = \frac{D_{SS}/2}{z}$$

Credit: Steve Warwick, NGST

Techniques to detect planets around other stars

1995: A "Hot Jupiter" orbiting 51 Peg

51 Peg b/ Dimidium 51 Peg A/ Helvetios

JWST transit spectroscopy: looking for molecules in exoplanet atmospheres

